

DC-INDUSTRIE2 – open DC grid for sustainable factories

Joint research project: DC-INDUSTRIE2 – Direct current for the factory of the future

Contact: Dr. Hartwig Stammberger (Eaton, Bonn, project coordinator)

Prof. Dr.-Ing. Holger Borcherding (TH OWL, Lemgo, scientific lead of the project) Supported by:

on the basis of a decision by the German Bundestag

Overview: research project DC-INDUSTRIE2

- Funded by the German Federal Government
 - Funding codes: 03EI6002A-Q
- 3.5 years until March 2023
- 39 industry and research partners
 - Some 140 engineers & researchers
- Objectives:

Page 2

- Safe and robust energy supply for production
- Mains-supporting connection to the supply grid
- Maximum use of decentralized, regenerative energy
- Simple project planning
- Implementation and validation
 - 10 model plants and transfer centers

Federal Ministry for Economic Affairs and Climate Action

Status quo: Topology of an industrial AC grid

© DC-INDUSTRIE2 & ZVEI, Nov. 2022

Energy: Current situation with frequency converters (AC-AC)

Basic wiring of frequency converters is optimized for **motor** applications

AC grid Diode rectifier

In **braking** mode, the inverter needs to dispose of the stored energy.

The most common method is the **dissipation of the energy to heat** in **braking resistors**

Energy flow in generator mode

Topology of an industrial DC grid

© DC-INDUSTRIE2 & ZVEI, Nov. 2022

many

Many AC

•

•

Electrical energy exchange with a DC grid

•

۲

Advantages of DC grid for industrial plants

Energy efficiency

- Lower losses (typically 2-4% *)
- Total recovery of braking energy *
- Direct use of renewable energy sources *
- Peak power reduction through suitable storage (up to 80%) *

Resource efficiency

- Reduction of copper use and power loss (cables)
- Lower equipment costs and space savings in the field

Grid stability

- Additional investments for mains filtering and compensation can be omitted, and existing grids are supported
- Production failures through mains disturbances can be prevented / reduced
- Industrial Smart DC-Grid / flexibility
 - Infrastructure for intelligent control of energy flows enables advantages in energy purchasing
 - Supports modular machine concepts

*: Evaluated in model applications

DC sectors organize the grid

DC sectors

- Build a logical unit
- Include components with strong functional
 - dependencies to each other
- Provide sufficient capacity to suppress switch-frequency compensation processes from the DC-grids
- Are protected with a smart DC breaker

Simplified power calculation AC vs DC

- Active power
 - $P = U \cdot I \cdot \cos(\varphi)$
- Reactive power

•
$$Q = \sum_{n=1}^{\infty} \left[U_n \cdot I_n \cdot \sin(\varphi_{U_n} - \varphi_{I_n}) \right]$$

Distortion power

•
$$D = U \cdot \sqrt{I_2^2 + I_3^2 + ...} = U \cdot \sum_{m=2}^{\infty} [I_m^2]$$

• And everything three times for threephase systems ...

• Power for DC

- Active power $P = U \cdot I$
- It really is that simple ...

In AC reactive power and distortion power need to be transmitted to the end user via cabling
No such overhead in DC

Voltage bands – here for active infeed converters

Operating status – function of voltage and duration

- A7 Prohibited
 - Damage very likely
- A6 Overvoltage protection active
- A5 Overvoltage protection not active
 - Devices may switch off
- A4 Abnormal status
 - Devices shall function dynamically
- A3 Normal operation
 - Full functionality
- A2 Acute undervoltage
 - Devices may reduce power
- A1 Blackout status
 - Switch off
 - Pre-charge on startup

Upper voltage limit Ux in DC grid for nominal voltage		Voltage band	S1: t < 50 μs <mark>1)</mark>	S2: 50 μs ≤ <i>t</i> ≤ 1 ms	S3a: 1 ms ≤ <i>t</i> ≤ 5 s	S3b: 5 s ≤ <i>t</i> ≤ 60 s	S4: t > 60 s
	1)	07					
Voltage 🚽	U6: 2000 V	Β/	Α/				
	U5: 880 V U4: 800 V U3: 750 V U2: 485 / 620 V	B6	A6	A7			
		B5	A4	A5	A5	A7	A7
		B4	A3	A3	A3	A4	A5
		B3	A3	A3	A3	A3	A3
		B2	A4	A4	A2	A2	A2
	01: 400 V	B1	A4	A2	A1	A1	
	Time 🗲						

Voltage level Bx and duration Sx

determine operating status Ax

Based on IEC Technical Report TR63282

1) 2000 V and 50 µs are used for simplicity since devices have to withstand a

2 kV 1.2/50 µs surge pulse during type testing.

© DC-INDUSTRIE2 & ZVEI, Nov. 2022

Voltage stability and droop curves

Grid voltage mirrors power balance

- a) Uncontrolled operation (basic network)
 - No active control of the DC-voltage (operation with diode rectifier)
- b) Autonomous droop control
 - Active feeders regulate their power depending on the level of DC voltage
 - The characteristic is defined by a non-linear characteristic curve
 - No communication required

c) Droop control with communication

- Setting of the characteristic curve can be changed by a central control unit during operation
- Only slow communication required

d) Central voltage control

- Central control unit provides the setup power values
- Fast communication required real time control

Choosing the control method allows for simple as well as

complex DC-grids with several sources

- Active infeed converter
- PV infeed
- Energy storage

Cabling: Resource- and energy efficiency

Example:

AC: 20 A

- Cross section → 2.5 mm²
- Total copper: 4 × 2.5 mm² = 10 mm²

DC: 14.1 A

- Cross section → 1.5 mm²
- Total copper: 3 × 1,5 mm² = 4.5 mm²
- 55% less copper for same power
- 50% less power loss in cables ($R \times i^2$)

	-		
Wiring type	B1		B1
Number of wires			
simultaneously	2	3	
loaded			
Wire cross section	current in A		
in mm ²			
1.5	17.5	15.5	Permitted current in A
2.5	24	21	@ 30°C ambient temp.
4	32	28	acc. to IEC 60364-5-52
6	41	36	_

Page 13

© DC-INDUSTRIE2 & ZVEI, Nov. 2022

Smart DC Breakers: fast and reliable protection

- Requirements
 - Fast operation avoid voltage dips
 - Bi-directional
- Power semiconductors
 - IGBT + Diode
 - (Mechanical breakers too slow)
- Functions
 - Switching
 - Overcurrent protection
 - Isolation
 - Detection of over- & undervoltage
 - Pre-charging
 - Communication

• Properties

- Fast (< 100 µs switch-off time)
- Low fault energy (<< 1% of mechanical breaker)

Smart Hybrid Breaker reduces power loss

- Mechanical contact conducts current
 - low power loss
- Power semiconductors
 interrupt
 - Fast
- Switch-Off procedure
 - Actor opens mechanical contact → short arc
 - IGBT picks up the current (forward voltage < arc voltage) and switches off →
 - Varistor limits voltage
 - Isolation contacts open load- less and isolate
 - Coil limits current increase during short-circuit

Insulating materials for DC cables and DC housing materials

Basics electrical field E

- AC: E-field dependent on voltage and geometry
- DC: E-field is rectified and is subject to pronounced temperature
- Impacts
 - Different mechanisms between AC and DC
 - Higher stress on the insulating material at DC possible:
 - Conductivity changes with temperature and moisture content
 - Polarization processes, field elevations, field migrations
 - Material behavior nonlinearly dependent on field distribution

DC-INDUSTRIE2

- Accelerated aging of selected typical AC insulating materials under DC stress at elevated temperatures in laboratory conditions
- Insulating materials: influence of plasticizers, fillers and the type of inner conductor (bare copper or tinned) on DC resistance
- Results
 - Suitable insulation materials for DC are available

Model applications of DC-INDUSTRIE

• Mercedes-Benz

- Production cell with 4 robots
- Challenging energy demand (Al-welding)
- Continued from EU project AREUS

Mercedes-Benz

- Suspension track
- 5 individual carriers with slip rings
- Coupling of two applications

• Homag

- Wood working machines
- Many loads
- Sensors & actors
- Integrated energy storage

• KHS

- Beverage container handling
- Open concept
- > 30 drives

Model applications of DC-INDUSTRIE

Model applications of DC-INDUSTRIE2 1/4

• BMW

- Car body production cell
- Focus
 - Energy distribution & storage
 - Energy feedback to grid
 - Switching and protection

• KUKA

Test cell with 4 robots
 Focus: robot control

Fraunhofer IISB

DC infrastructure in office building, EV charging

© DC-INDUSTRIE2 & ZVEI, Nov. 2022

Model applications of DC-INDUSTRIE2 2/4

Model applications of DC-INDUSTRIE2 3 / 4

Homag

- Wood working machines
- Three applications spread out in a factory hall
- Setup
 - Multiple connections to AC grid
 - Several storage options
 - Flywheel
 - Capacitors
 - Batteries
- Focus
 - Influence of long cables on voltage dips during supply failure or faults
 - Coordination between several active infeed converters

Model applications of DC-INDUSTRIE2 4 / 4

• TH OWL

- Model electro-mechanical loads, up to 11 axes
- Storage

• Several infeed rectifiers

- Focus
 - Model dynamic behavior in real time
 - Test virtual machines in a DC environment
 - Test of multiple failure scenarios

• Fraunhofer IPA

- Industrial power distribution
- AC-DC
- transformation
- Protection concept
- Parallel operation of AICs

Which adaptations are necessary for machines and systems for DC?

© DC-INDUSTRIE2 & ZVEI, Nov. 2022

More information and publications (examples)

- DC-Industrie Homepage
 <u>www.dc-industry.com</u>
- Publications (excerpt)
 - <u>White paper</u>
 - Several technical reports and papers
 - Textbook *The DC-Factory,* Hanser Verlag, 2021 <u>https://www.hanser-</u> <u>kundencenter.de/fachbuch/</u> <u>artikel/9783446471740</u>
 - English and German version available

HANSER

The DC-Factory

 \square

v efficient, Robust, Forward-looking

Hannover Messe 2022

Benefits of DC & DC-INDUSTRIE

- 1. Open system
- 2. Efficient integration of green energy
- **3. Resource efficiency**
- 4. Lower energy consumption
- 5. Reduced feed-in power

6. Increased system availability

Part of the committed DC-INDUSTRIE team

Project partners – <u>www.dc-industry.com</u>

Associated partners: ABB Stotz-Kontakt; <u>AMK Arnold Müller</u>; Audi; <u>Bauer Gear Motor</u>; Bender; <u>Danfoss</u>; DEHN; <u>ESR Pollmeier</u>; Gerotor; <u>Harting</u>; JEAN MÜLLER; <u>KUKA</u>; LEONI; <u>Maschinenfabrik Reinhausen</u>; Paul Vahle; <u>Puls</u>; Rittal; <u>SEW-PowerSystems</u>; Siemens; <u>TU Ilmenau</u>; Wöhner