

Follow and visit us

Open Direct Current Alliance

Overview, characteristics, technology, applications, benefits

Dr. Hartwig Stammberger | Eaton | Open DC Alliance | Aug 2025

Content

Content

ODCA in a nutshell ODCA---**DNA of ODCA DC** Microgrids ---**Applications** Benefits

Open Direct Current Alliance ODCA – Who are we?

Plenary meeting March 2025

- International non-profit organization
- With 80+ members
- In **16** countries
- On 3 continents
- Main office dedicated staff
- 5 active working groups

Open Direct Current Alliance ODCA – What do we do?

VDE

Publish system description

- Free access
- Recognized by German standards organization VDE
- Networking

Knowledge exchange

Best practice sharing

Contribute to IEC & UL standardization

Vision

DC contributes to a sustainable world

Mission

Establish an international DC ecosystem

Content

ODCA in a nutshell ODCA--direct current by zvei **DNA of ODCA DC** Microgrids ---**Applications** Benefits

Our organizational DNA

Open technology

- System description freely available
- Based on existing certification
- Liaison with global standardization

Organization

- Full-time independent staff
- Transparent working groups
- Elected board & working group chairs

Equal access

- One member one vote
- Same rights for all
- Bringing together the entire DC ecosystem

Membership fees

- According to company size
- Everyone contributes

Our technical DNA – overview

Symmetry

Voltages

Power management

Protection

Our technical DNA 1/4

Symmetrical system

- L+ and L-
- Simple wiring
- Simple control
- Simple protection
- Smaller insulation distance
- No active wire at / near ground potential

Our technical DNA

2/4

Voltage band

- Full function in green band
- Based on IEC TR 63282
- Compatible to AC voltage levels

Our technical DNA 3/4

Power management

- Droop curve
- Measure voltage → control power

Our technical DNA 4/4

Protection

- Electronic solution preferred
- Same safety rules as for AC

Content

ODCA in a nutshell ODCA--direct current by zvei DNA of ODCA **DC** Microgrids **Applications** Benefits

Topology of a DC grid

- DC link connects sources and loads with each other
- Central bi-directional connection to AC supply grid
- Reduce conversion steps

DC is already (almost) everywhere

Battery storage

Marine

Traditional AC supply

Multiple conversion steps from direct current DC to alternating current AC and vice-versa

- Many devices
- Many resources
- More cabling
- Higher maintenance
- Higher power loss

In one word: Waste

DC Microgrid

DC connection

- Fewer conversion steps
- Fewer resources
- Higher efficiency
- Less maintenance
- Higher resilience

Simply put: Better solution

- DC grids operate in voltage bands
 - No need to stay at a fixed value
 - Different from AC frequency (50 / 60 Hz)
- The DC grid has "breathing room" in the green band
 - 620 V to 750 V for 3-phase 400 V AC
- In DC, voltage mirrors power balance
 - Supply < load → voltage drops >
 - Supply > load → voltage rises

Power management with droop curves:

$$i = f(u)$$

- DC voltage change is indicator for power balance
 - Supply < load → voltage drops >
 - Supply > load → voltage rises
- Power balancing
 - Active components measure voltage at their terminals ...
 - ... and adjust power output to predefined current-voltage "droopcurve"
- No communication needed –
 voltage carries the information!

Photovoltaic

photovoltaic (green) or storage (blue)

Limited functionality

No operation

Symmetrical system L+ and L-

Two active wires

- No mid point conductor
- Symmetrical voltages to ground (PE)
- Simpler wiring
- Simple control: one voltage only
- Smaller insulation distance: $U_{\rm n}/2$ to ground
- Like 3~AC w/o neutral

Grounding: AC-side grounding

ODCA--direct current by zvei

DC system with AC-side grounding on TN-S system

Ground reference for the DC system is the star point of the AC transformer . AC/DC converters without galvanic isolation; as rectifier or as switching converter (AIC). Fast overcurrent protection in both poles (L+ and L-).

NOTE 1 Additional grounding of the PE in the installation may be provided base grounding)

NOTE 2 In case of loss of the AC power source(s), the DC grid changes to an IT system

© Martin Ehlich | Lenze SE | 08.05.2024

Source: ODCA system description, Fig. 7.1 / VDE SPEC 90037

- Star-point ground of (AC) transformer is used
- Two-wire DC system
 - L+ and L-
 - No mid point conductor
- AC applications can be used behind the same transformer
- New IEC 60364-1will include this grounding option

Grounding: DC-side grounding & IT system

Source: ODCA system description, Fig. 7.6 / VDE SPEC 90037

Properties

- Isolated to AC
- Grounded on DC side: M
- Two-wire DC system
 - L+ and L-
 - Mid point conductor not distributed
- Symmetrical voltages to PE
- Other topologies possible
 - IT system

Protection devices

Source: ODCA system description, Fig. 5.1 / VDE SPEC 90037

- General requirements
 - Conduct current
 - Detect fault currents
 - Interrupt operational & fault currents
 - Isolate
- No difference between AC and DC

Protection devices

Source: ODCA system description, Fig. 5.1 / VDE SPEC 90037

- Special DC requirements
 - Inrush current of capacitors
 - Limit pre-charge current
 - Many distributed sources, capacitive grid
 - Rapid rise of short-circuit current
 - Ultrafast operation
 - No strict "top-down" energy flow
 - Detect direction of current for selectivity
 - No natural current-zero crossing
 - Force current to zero

Protection devices: Pre-charging

Source: ODCA system description, Fig. 8.2 / VDE SPEC 90037

- Uncharged capacitors in a sector
 - Pull high charging current upon switch-on
 - Will trip the breaker if not limited
 - · Pre-charging scheme needed
- Voltage controlled precharging scheme
 - Input voltage U_A exceeds threshold \rightarrow triggers precharging
 - Output voltage $U_{\rm B}$ rises \rightarrow Precharge sequence ends when $\Delta U = U_{\rm A} U_{\rm B}$ falls below threshold

Protection devices: Semiconductor circuit breaker

- Rationale for fast operation
 - Ensure operation of healthy parts of the system (voltage drops below green band)
 - Avoid discharging of storage devices
- Solution
 - Power semiconductors shut-off
 - Varistor limits voltage and dissipates circuit energy
 - Isolation contacts disconnect w/o current
- Other functions
 - Detection of over- & undervoltage
 - Energy measurement
 - Communication
- Properties
 - Fast (< 100 µs switch-off time)
 - Very low fault energy: << 1% of mechanical breaker

Protection devices: Selectivity

- All sources feed a fault
 - Capacitors in DC-links
 - Storage
 - In-feed ...
- Only breaker of faulty sector shall interrupt
 - More challenging than in top-down (AC) structure
 - Breakers of parallel sectors shall not trip
- Solution
 - Semiconductor breakers needed
 - Technical options
 - Detect direction of current flow and delay tripping for reverse current
 - Balance rated current of parallel DC sectors.
 - More parallel sectors improve selectivity

Content

ODCA in a nutshell ODCA--direct current by zvei DNA of ODCA **DC** Microgrids ---**Applications** Benefits

Application Schaltbau NeXT Factory

1.3 MWp PV

- Battery storage
- 10 MWh thermal storage
- E-car charging

© Schaltbau GmbH: https://www.schaltbau.com/en/about-us/current-events/news-and-press/press-releases/schaltbau-opens-next-factory-in-velden/

- > 70% self-consumption of1.3 MWp PV
- 85% peak power reduction in fully automated storage & retrieval system
- 30% peak-power reduction overall
- 35% lower energy cost
- ODCA concept was base for regulatory approval

Application Phoenix Contact AES Arena

Sources: ODCA Linkedin Post 27. May 2025;

https://www.cencenelec.eu/media/CEN-
CENELEC/Events/Events/2023/AES/aes_presentation_possel-doelken_2023-12-04.pdf

- 650 V DC grid
- Positive overall energy balance
 - 2.5 GWh/a generated
 - 1.9 GWh/a needed
- Thermal-electric sector coupling
 - 1500 m³ ice storage
 - Uses phase-change energy (solid-to-liquid) for seasonal storage (winter → summer)

Application Mercedes-Benz Factory 56

Source: https://odca.zvei.org/

Source: Dr. Davis Meike: Markt & Technik DC Konferenz, 23. Oct. 2024, Munich

- 220 000 m² production area
- 2 MW DC grid for building infrastructure
- Heating and air conditioning
- Battery storage for load shifting
- Low-voltage Direct Current defined as standard!
 - In factory automation
 - In building infrastructure
 - Mercedes-Benz world-wide standard "integra.8"

Content

ODCA in a nutshell ODCA--direct current by zvei DNA of ODCA DC Microgrids ---**Applications** Benefits

Resource efficient

- √50 % less copper (cabling)
- √ Fewer components

Energy efficient

- √10 % reduction achieved
- √Full recovery of braking energy (lifts, robots, ...)

Direct integration of green energy

✓ Reduce grid connection load

Resilient

- ✓Backup power
- ✓ Lower failure risk

Peak Power reduction

- √80% achieved
- √"Grid friendly"
- ✓ Lower power bill

AC disadvantage: Braking energy is wasted

Frequency converters
 are optimized for motor
 operation

- In generator mode (slowing down), the inverter needs to get rid of the stored energy.
- Typically, the energy is converted to heat in braking resistors

DC benefit: Braking energy is used

- Less effort
 - AC/DC conversion for each drive is redundant
 - Fewer components
- 100% recuperation of braking energy
 - Into different motor
 - Into storage device
- No need to "cool-away" the braking energy → additional saving

WE CAN DO BETTER — WITH DC!

For more information:

Resource efficient

Energy efficient

Direct integration of green energy

Resilient

Peak power reduction

